

Abstract— This paper presents a Multi-Agent approach to
the problem of recommending training courses to engineering
professionals. The recommendation system is built as a proof of
concept and limited to the electrical and mechanical
engineering disciplines. Through user modelling and data
collection from a survey, collaborative filtering
recommendation is implemented using intelligent agents. The
agents work together in recommending meaningful training
courses and updating the course information. The system uses a
users profile and keywords from courses to rank courses. A
ranking accuracy for courses of 90% is achieved while
flexibility is achieved using an agent that retrieves information
autonomously using data mining techniques from websites.
This manner of recommendation is scalable and adaptable.
Further improvements can be made using clustering and
recording user feedback.

I. INTRODUCTION

RECOMMENDER systems, for advising or

recommending subject matter, are emerging as a growing
application and research field [1]. These systems help users
deal with information overload [1]. Information overload
results from the availability of a large number of information
on any topic in this age. Recommender systems form
decision support systems for individuals as well as whole
organisations by customising and recommending
information. Recommender systems use computational
intelligence and can be trained to find patterns between
different users and subject matter. In this paper the problem
of recommending training courses for engineering
professionals is tackled.

This paper presents a system that recommends training
courses users by reducing the information overload by using
information customisation as well as recommendation. The
system further reduces the need for users to search a wide
variety of sources of information as well as any need to
monitor these sources for changes and updates. The scope of
recommendation has been reduced to Electrical and
Mechanical engineering professionals. Firstly the
background is sketched in section II. Section III reviews
existing solutions, section IV is the system overview and
section V and VI discuss the agents involved in greater
detail. The user interface and details on integration is
discussed in section VII. An evaluation of the system is
given in section VIII and finally a conclusion is given in
section IX.

II. BACKGROUND

A. The Recommendation Problem

The problem that most engineering companies face is

Manuscript received December 11, 2007.

trying to keep their employees skills updated and thus
building their human capacity. To solve this employees are
sent to training courses throughout their careers. Thus some
companies have complete departments that deal with
training. These departments take employee information and
use it to look for courses from service providers. The
departments often face the problem of not having enough
training courses while the employees often feel that the
courses offered will not benefit them. When the department
or employees search for courses they are then met with
numerous results thus are faced with information overload.
An intelligent system that can use data from users, service
providers and expertise from the training departments and
advisors can improve the experiences that the employees
have.

B. Intelligent Agents and Multiagent Systems

Agents are defined by Wooldridge [2] as computer
systems that are situated in some environment and capable
of autonomous action in this environment in order to meet
its design objectives. Intelligent agents [2] [3] are defined as
agents that can react to changes in their environment, have
social ability (communication) and the ability to use
computational intelligence to reach their goals by being
proactive. Agents are active, task-oriented – modeled to
perform specific tasks – and are capable of autonomous
action and decision making. Objects on the other hand are
passive and noun-oriented – modeled to represent things. So
the agent modeling paradigm can be looked at as a stronger
encapsulation of localized computational units that perform
specific tasks whereas objects model real-world “things”
with specific attributes.

By combining multiple agents in one system to solve a
problem, the resultant system is a Multiagent system (MAS)
[2]. These systems are comprised of agents that solve
problems that are simple than the overall system. They can
communicate with each other and assist each other in
achieving larger and more complex goals. Thus problems
that software developers had previously thought as being too
complex [4] can now be solved, by localising the problem
solving [5]. Multiagent systems have been used in predicting
the stock market [6], industrial automation [7] and e-learning
systems [8].

An Intelligent Multi-Agent Recommender System for Human
Capacity Building

III. REVIEW OF EXISTING SOLUTIONS

There are numerous examples of information
customisation systems that have been implemented. Simple
examples are search engines [9]; personalised search engines
[10] and online stores [11] that use user information to
customise adverts and goods being sold. Personalised search
engines differ from regular search engines in that they use
user habits and preferences [11] to return better search
results and recommend other searches that might be useful.
Other intelligent recommender systems have also been
implemented. An example is MASACAD, which is a Multi
Agent System for Academic Advising [12]. It was developed
to assist students in choosing courses to take in university.
This system had the limitation that given new courses the
system had to be retrained. It also is not able to
autonomously find new courses as it was only capable of
using one source of courses, which is the university
database. Autonomous updating is a future problem focus in
recommender systems [1] and is solved in the system
implemented.

IV. SYSTEM OVERVIEW

The Multi-Agent solution designed and built for the
recommendation problem has two main agents. The first
agent is the recommendation agent and the second is the
information retrieval agent. The configuration and
interactions are shown Figure 1. The User Interface is the
gateway to the system for the user, the Recommending
Agent proposes a personalized list of training modules, and
the Information Retrieval Agent searches a predefined list of
service providers’ websites for course information and
updates. The actions of the agents are described Figure 2 in
reference to Figure 1. The proceeding sections describe the
agents in further detail.

Figure 2. Agent Action Procedures

V. RECOMMENDATION AGENT

The recommendation agent is a reactive agent that is
responsible for using course information as well as user
profile information to recommend courses to users using a
ranking method. This is done by first searching the course
database using the user profile and then ranking each course
returned from the search. The recommending agent was built
using the Sphinx [13] search engine and the IBM Agent
Building and Learning Environment (ABLE) [14].

A. User Modelling

To collect useful user information, user modelling had to
be carried out [15]. For this to be done properly information
in the domain of career guidance and counselling needed to
be collected. The users of the system have to be modelled so
as to use them in determining what they would consider as
good courses. Through consultation with the Career
Counselling and Development Unit (CCDU) at the
University of the Witwatersrand the user attributes that
would be most useful were found. When assisting students

Figure 1. Multi-Agent Recommender System

with their careers, counsellors at the CCDU look at a number
of attributes. The ones chosen for the recommendation
system are:

• Interests (Professional and Personal)
• Abilities (Experience in the chosen field and

discipline)
• Goals (Short term and long term)

These attributes then make up the user profile that will be
created for each user. The professional interests and
discipline are used in the initial search of the course
database. The returned results are then sent to the ranking
neural network to then rank each course. The experience
level and goals of the user were finalised in conjunction with
companies Hatch SA and ThyssenKrupp engineering. The
experience level was divided into junior, intermediate, senior
and management. The goals included professional
development, specialisation, marketing etc. The personal
interests for example are entertainment, sport, outdoors etc.
The personal interests, goals and experience level were used
as inputs into the ranking structure. Professional interests
depend on the discipline but these can be open pit mining,
pumps, energy management etc. This information is stored
in a database when a user creates a profile in the system.

B. Course Information

In order to use courses for recommending, certain
information about the course is needed to distinguish courses
from each other. Other recommendation systems faced with
type of task have resorted to using a fixed number of courses
and then training a computational intelligence tool such as a
Neural network on these courses only [12]. This way of
recommending is not scalable as when new courses are
added then the training has to be carried out again. For this
system keywords from the courses were used instead to
distinguish between courses. Thus when a new course is
added to the course database, its keywords are extracted and
then used as the course information in the recommendation.
This allows for a system that can grow its course list without
much retraining or reconfiguration.

From each course a maximum of 3 keywords were
extracted. The recommendation system has a keyword
extractor that is used by the Information Retrieval agent to
extract keywords from the courses that it finds and adds to
the course database. Controlled keyword extraction [16] is
used so as to make sure that the keywords extracted are
those available in our keyword database. The keyword
database constructed for the MAS has 233 keywords
belonging to the electrical, mechanical or both engineering
fields. Each keyword has an id. Thus the keywords resulting
from the courses can be used for training the recommender
by using their id numbers.

C. Searching the Database

The course database was populated by finding courses
from the different service providers. These courses then
needed to be efficiently searched. For this a search engine
tool was needed. The Sphinx search engine was used to sift
through the databases given search strings. The search
strings used in the searches were constructed from the

professional interests of the user as well as their discipline.
This customised the information returned to the user to their
likes. The search engine indexes the course database each
time a new course is added and is built in C++ for speed.
Speed is rated at an average of 0.1 sec on 2-4 GB of text
data. Thus searching does not take a lot of time and results
can be processed quickly. After this search the courses are
ranked.

D. Ranking of Courses

To recommend the courses to users ranking was used.
This ranking used the course keywords as well as selected
profile information. A classification multilayer perceptron
neural network was used for the ranking. This neural
network configuration is shown in Figure 3.

Figure 3. Ranking Neural Network

The general equation of a MLP neural network is shown
below (1):

))(*(
1 1

)2(
0

)1(
0

)1()2(
∑ ∑

= =

++=
M

j

d

i
kjjjiinnerkjouterk wwxwfwfy (1)

yk is the rank of the course, xj represents the inputs into the
neural network and w represents the different weights
between the nodes in the neural network. For the
classification network the fouter

activation function is a

logarithmic activation function and finner is the hyperbolic
tangent function. Training is done using the back
propagation algorithm [17].

1) Data Collection
To acquire data to train and test the ranking neural

network, a survey was conducted online. Electrical and
mechanical engineers from Hatch SA and ThyssenKrupp
engineering were requested to fill in the survey. The survey
asked the engineers to choose their discipline, professional
interests, personal interests and long and short term goals.
The engineers were then presented with a list of courses
available and then required to choose their best 5. After
choosing 5 courses, they then ranked them from 1 (highest)
to 5 (lowest). This information was then recorded on our
survey database. 250 training data sets were collected from
the survey as well as 58 testing data sets. The survey was
done in such a manner so as not be biased towards any bias
that the companies might have. It was decided that the
system should represent the views of the employees, who are
the intended users, and not the companies. When asked to

put in a section that could be controlled by the employer it
was decided it would be best to represent the views of the
users. Thus recommendations result from what a similar type
of users are interested in. This type of recommendation is
collaborative based filtering using regression (NN).

2) Neural Network Training and Testing
The data collected from the online survey was used for

training the ranking neural network. The inputs into the
neural network were the course keywords which were
encoded into 8 bit binary numbers thus account for 24 input
nodes. The profile information accounted for the rest of the
inputs (6) thus resulting in 30 input nodes. Data from the
profile is converted to numbers using the key Ids from the
database.

Data from the survey is directly accessed using a database
import tool from the ABLE toolbox and then sent in as
inputs into the neural network. This allowed for rapid use of
the data without having to change its format. A typical
learning algorithm, back-propagation, compares the NN’s
output to the desired output, calculates an error, propagates it
back through the network and (using a non-linear optimizing
algorithm known as “gradient descent”) adjusts the NN’s
weights to decrease this error [18].The numbers of hidden
nodes were optimised first. This entails changing the number
of hidden nodes in the MLP network and then training. The
testing root mean square [19] error is then checked to see
how well the network is performing on data it has not seen
before. 400 training epochs were used with a learning rate of
0.2 in the ABLE back propagation toolbox. Testing was
done with data that was not used to train. The accuracy of
the network was measured by the number of correct
predictions (rank) within a tolerance of 1 ranking point.
Different configurations were tested and are shown in Table
1.

TABLE 1
 NEURAL NETWORK CONFIGURATIONS

Configuration 32 40 32 -16

RMS Error 0.137 0.15 0.151

Accuracy
(Tolerance of 1)

90% 71% 72%

32-16 represents a two hidden layer architecture. The

network with 32 hidden nodes was chosen as the network to
use for ranking. The top 5 – 15 ranked courses would then
be displayed to the user. This then would complete the entire
recommending process.

VI. INFORMATION RETRIEVAL AGENT

The information retrieval agent performs two important
functions. Firstly it uses data mining to extract courses from
service provider websites and then add or update them on
the course database. Secondly it extracts keywords from the
course description and uses the keywords to classify the
course. This agent is based on a simple premise: give it an
example of what you want it to retrieve, set it free and wait
for it to return the results, and update the course database
with any new information from these results. Its task is
therefore two-fold: automated data extraction and
integration, that is, what to do with the data once it is

extracted.

A. Data Mining

The vast amount of poorly structured information that
exists on public websites makes data extraction a non-trivial
task. Furthermore, the content is often scattered over several
places on the website, thereby requiring automated
navigation like clicking links, filling in forms and crawling
to other pages on the site. An inductive machine learning
approach was taken to solve this problem. The agent is
presented with sample training pages to learn extraction
rules which consist of prefix and suffix patterns to mark the
beginning and end of target content respectively. Once the
rules are learnt, the agent then applies them to extract target
items from the other pages [20].

The data extraction was implemented using the scRUBYt
framework [21]. This framework, written in Ruby, allows
for the use of a fast HTML parser library known as Hpricot
[22] as well as the WWW::Mechanize library [23] that
effectively provides web browsing functionality in code.

B. Keyword Extraction and Classification

The next task of the Information Retrieval Agent: to
integrate the extracted data into the existing database,
consists of automated keyword extraction and classification
of the course data. The keywords are used both to describe
the contents of the document and, as previously mentioned,
by the Recommender Agent when ranking a given course.
Classification on the other hand, improves the relevance of
the recommended information that is, electrical engineering
courses are not recommended to mechanical engineers and
vice versa.

A thesaurus-based keyword extraction algorithm known
as KEA++, implemented in Java, was used to perform
automated keyword extraction [16]. This machine-learning
based algorithm works in two main stages: candidate
identification and filtering. Candidate identification
involves identifying candidate terms by segmenting the
document into tokens on the basis of whitespace and
punctuation, followed by the use of a pseudo matching
technique [24] to match all n-grams against the controlled
vocabulary (thesaurus). A set of attributes is then calculated
for each term, the most important being the TF×IDF score
given by the equation [25]:

N

Pdf

Dsize

DPfreq
IDFTD

)(
log

)(

),(
2−×=× (2)

where freq(P,D) is the number of times P occurs in D,

size(D) is the number of words in D, df(P) is the number of
documents containing P in the global corpus and N the size
of the global corpus.

In the filtering stage, a Naive Bayesian classifier model,
previously trained on manually indexed course documents,
is then used to determine the probability that each word is an
index term or not using the formula [25]:

]|[]|[][tan yesfPyestP
NY

Y
yesP cedisIDFTF×+

= (3)

similarly for P[no], where Y is the number of positive

instances in the training documents, N is the number of
negative instances (candidate phrases that are not
keyphrases), t is a feature value derived from Equation 2
above and f is the position of the first occurrence of the term.
The overall probability that a candidate phrase is a
keyphrase is then calculated as:

][][

][

noPyesP

yesP
p

+
= (4)

The top ranked candidates are then selected as the

document keywords (a more detailed explanation of the
algorithm is available in [25]). Once keywords have been
extracted, classification is determined via a database look up
that maps keywords to the engineering disciplines. Upon
completion, the agent then checks to see if the particular
course exists and updates the database if it does not.

VII. INTEGRATION AND USER INTERFACE

A. Integration

To integrate the agents and the modules such as the
keyword extraction and user interface the Symfony [26] web
framework was used. The framework allowed for the use of
the Model View Control (MVC) paradigm [26] in building a
web software application along with Rapid Application
Development (RAD) [26]. The MVC paradigm allowed for
an object oriented and modular approach for putting the final
recommendation system together with a well built user
interface. The model is the logic of the application, the view
is the interface to the application and the controller connects
the two together. This allows for developers to focus on
logic without worrying about the look and vice-versa. Thus
the resultant complete system was integrated with features
such as data security and validation added in without much
effort. The parallel building of the interface was due to the
MVC paradigm. Programmers need not know about the
others modules or actions to build their part of the
application. Object relational database [27] use was
encouraged by the framework and used. All of the databases
used in the recommender system are relational databases
[27] built with MySQL database engine. This allows for
speed and data integrity through using keys.

B. User Interface

The user interface was designed so as to be easy for a user to
use. Ease of use in such systems is paramount so that the
user need only focus on the task at hand and not on learning
how to use the system. Through experience with simple user
interfaces, such as that of Google [28], an intuitive interface
was built. When the user has registered and logged on to the
system he/she is met with their profile information,
recommended courses and the search and navigation bar.
This is illustrated in Figure 4.There are no complicated

actions. The user can simply edit their profile which will
automatically then refresh the recommended courses. The
user can also search the course database themselves and
view course information by service provider or discipline.
The Symfony framework encourages the use of logic based
programming as well making available tools to validate user
actions. If there are errors in data entry then the system
warns the user. Users are also not able to access other user’s
information. The administration module for the user
interface was setup to manage users, courses as well as the
information retrieval agent’s configurations.

Figure 4. User Interface

VIII. EVALUATION AND DISCUSSION

A. Evaluation

The initial goals for the project were to build functioning
agents, have a functioning system that could be used for
recommendation, a system that is easy to use by the target
user that is stable and robust, and a system that is scalable
and adaptable. The built system achieved these goals. The
recommendation agent has a ranking accuracy of 90% with a
tolerance of 1 ranking point as well as a fast search engine
integrated. The information retrieval agent is able to go to
websites and extract course information as well as classify
these courses using a keyword extraction algorithm. The
user interface was built to be easy to use and without any
complicated procedures. User feedback during open day
indicated that this goal was achieved.

The final system is highly decoupled. This is shown by
the use of different programming languages used in the
implementation. The best language was used for the task at
hand e.g. Ruby for Information Retrieval, C++ for the search
engine. Thus if a different ranking algorithm needed to be
used it can easily be replaced as the framework allows for it.
The rules of communication within the agent are the only
attributes that need to be kept. Thus the system is scalable as
well as being adaptable. E.g. for adaptability, only a change
in the user modelling and the courses/subject matter being
investigated is needed. Thus the built system can be adapted
to problem fields such as job searches, academic advising,
business support systems etc. The system cost is low as all
of the tools are open source or free to use.

B. Analysis and Recommendations for Further Work

The limitation of the built system is the use of the

supervised learning neural network for ranking. Thus if a
new discipline need be added then the neural network will
need to be retrained with new survey data. To remedy this
problem online learning methods [29] can be used as well as
modifying the current system to be able to provide user
feedback. Thus as more users use the system the system can
perform better. This would be termed content based filtering
recommendation. User feedback in terms of ratings of
courses attended can be used as an added input into the
system [29].

Due to time constraints keyword and document clustering
could not implemented. This would offer better
classification of courses [30] as well as offer insight into
how multidisciplinary courses are related.

IX. CONCLUSION

The Multiagent system approach for solving the training
course recommendation problem is successful in reducing
the information overload while recommending relevant
courses to users. The system achieves high accuracy in
ranking using user information and course information. The
final system is scalable and has possibilities for future
modification and adaptability to other problem domains.
Improvements to the system can be made and the system
forms a good platform for future research into the use of
computational intelligence in recommender systems.

ACKNOWLEDGMENT

The author would like to thank Raj Naran from Wits
CCDU for his input on user modelling. The author would
Leon Viljoen from Hatch South Africa, Peter Harris from
ThyssenKrupp Engineering and all of the engineers that took
part in the online Survey for their assistance.

REFERENCES
[1] L. Schmidt-Thieme, A. Felfernig and G. Friedrich. “Guest Editor

Introduction: Recommender Systems”, IEEE Intelligent Systems, pp.
18 -21, 2007.

[2] M. Wooldridge. An Introduction to MultiAgent Systems. John Wiley
and Sons, 2004.

[3] I. Rudowsky. “Intelligent Agents”. Communications of the
Association for Information Systems, Vol. 14, pp. 275-290, 2004.

[4] T. Marwala, E. Hurwitz. “Multi-Agent Modeling using intelligent
agents in a game of Lerpa”, eprint arXiv:0706.0280, 2007.

[5] B. van Aardt, T. Marwala. “A Study in a Hybrid Centralised-Swarm
Agent Community”. IEEE 3rd International Conf. on Computational
Cybernetics, Mauritius, pp. 169 - 174, 2005.

[6] P. Mariano, C. Pereira A, L. Correira, R. Ribeiro, V. Abramov, N.
Szirbik, J. Goossenaerts, T. Marwala, P. De Wilde. “Simulation of a
trading multi-agent system”. IEEE Int. Conf. on Systems, Man, and
Cybernetics, Volume 5, pp. 3378 – 3384, 2001.

[7] T. Wagner. “An Agent-Oriented Approach to Industrial Automation
Systems.” Agent Technologies, Infrastructures, Tools, and
Applications for E-Services, pp. 314 -328, 2002.

[8] A. Garro, L. Palopoli. “An XML Multi-agent System for E-learning
and Skill Management.” Agent Technologies, Infrastructures, Tools,
and Applications for E-Services, pp. 283 -294, 2002.

[9] R K. Belew. Finding out About: A cognitive Perspective on Search
Engine Technology and the WWW, Cambridge University Press,
2000.

[10] A. Birukov and E. Blanzieri and P. Giorgini. "Implicit: An agent-
based recommendation system for web search" in AAMAS '05, 618--
624: ACM, 2005.

[11] B. Sarwar, G. Karypis, J. Konstan, J. Riedl. “Recommender systems
for large-scale e-commerce: Scalable neighbourhood formation using
clustering:, Proceedings of the Fifth Int. Conf. on Computer and
Information Technology, 2002

[12] M. S. Hamdi. “MASACAD: A Multiagent Approach to Information
Customization for the purpose of academic advising for students”,
IEEE intelligent systems, pp. 60 – 67, February 2006.

[13] Andrew Aksyonoff. Sphinx Search Engine. Url:
www.sphinxsearch.com, last accessed 20 October 2007.

[14] J. P. Bigus, D.A. Scholosnagle, J. R. Pilgrim, W. N. Mills III, Y. Diao.
“ABLE: A toolkit for building multiagent autonomic systems”, IBM
System Journal, Vol. 41, No. 3, 2002.

[15] H. Gomaa, L. Kerschberg and G.K. Farrukh. “Domain Modelling of
Software Process Models”, IEEE International Conference on
Engineering of Complex Computer Systems, 2000.

[16] O. Medelyan and I. H. Witten. “Thesaurus Based Automatic
Keyphrase Indexing”, JCDL’06, 2006.

[17] C. Bishop, Pattern Recognition and Machine Learning. Springer,
2006.

[18] D. Rumelhart, G. Hinton, and R. Williams. Learning Internal
representations by Error Propagation. Cambridge, MA: MIT
Press, 1986.

[19] T.A. Yanar and Z. Akyurek. “Aritificial Neural Networks As a Tool
for Site Selection Within GIS”, Proceedings of the 5th International
symposium on Spatial Data Quality, June 2007.

[20] C. Knoblock, K. Lerman, S. Minton, and I. Muslea. “Accurately and
reliably extracting data from the web: a machine learning approach.”
IEEE Data Engineering Bulletin, vol. 23, no. 4, pp. 33 – 41, 2000.

[21] “scRUBYt! WWW::Mechanize and Hpricot on Steroids.”
http://www.scrubyt.org. Last accessed: 25/10/07.

[22] “Hpricot: A Fast, Enjoyable HTML Parser for Ruby.”
http://code.whytheluckystiff.net/hpricot/wiki. Last accessed: 25/10/07.

[23] “WWW::Mechanize, a handy web browsing ruby object.” http:
//rubyforge.org/projects/mechanize. Last accessed: 25/10/07.

[24] L. Rolling. “Indexing consistency, quality and efficiency.”
Information Processing and Management, vol. 17, pp. 69 – 76, 1981.

[25] O. Medelyan and I.Witten. “Thesaurus-based index term extraction
for agricultural documents.” Proceedings of the Sixth Agricultural
Ontology Service, 2005.

[26] Symfony: Open-Source PHP Web Framework url: www.symfony-
project.com last accessed: 22 October 2007.

[27] D. Bonjour. "The Need for an Object Relational Model and its Use",
Proceedings of the 5th International Conference on Extending
Database Technology: Advances in Database Technology, Vol. 1057,
pp. 135 - 139, 1996.

[28] Google inc. Google End User Experience. url:
http://www.google.co.uk/enterprise/end_user_experience.html, last
accessed 21 October 2007.

[29] Q. Wang, J. Liu and X. Li An Agent-Based Recommender System
Using Implicit Feedback, Improved Inter-User Similarity and Rating
Prediction, Proceedings of the 11TH Joint Int. Computer Conf. - JICC,
2005.

[30] P. Tonella, F. Ricca, E. Pianta and Christian Girardi."Using Keyword
Extraction for Web Site Clustering", Fifth IEEE International
Workshop on Web Site Evolution, pp. 41- 48, September 2003.

