
 
 

 

  

Abstract— This paper presents a Multi-Agent approach to 
the problem of recommending training courses to engineering 
professionals. The recommendation system is built as a proof of 
concept and limited to the electrical and mechanical 
engineering disciplines.  Through user modelling and data 
collection from a survey, collaborative filtering 
recommendation is implemented using intelligent agents. The 
agents work together in recommending meaningful training 
courses and updating the course information. The system uses a 
users profile and keywords from courses to rank courses. A 
ranking accuracy for courses of 90% is achieved while 
flexibility is achieved using an agent that retrieves information 
autonomously using data mining techniques from websites. 
This manner of recommendation is scalable and adaptable. 
Further improvements can be made using clustering and 
recording user feedback. 

I. INTRODUCTION 

RECOMMENDER systems, for advising or 

recommending subject matter, are emerging as a growing 
application and research field [1]. These systems help users 
deal with information overload [1]. Information overload 
results from the availability of a large number of information 
on any topic in this age. Recommender systems form 
decision support systems for individuals as well as whole 
organisations by customising and recommending 
information. Recommender systems use computational 
intelligence and can be trained to find patterns between 
different users and subject matter. In this paper the problem 
of recommending training courses for engineering 
professionals is tackled. 

This paper presents a system that recommends training 
courses users by reducing the information overload by using 
information customisation as well as recommendation. The 
system further reduces the need for users to search a wide 
variety of sources of information as well as any need to 
monitor these sources for changes and updates. The scope of 
recommendation has been reduced to Electrical and 
Mechanical engineering professionals. Firstly the 
background is sketched in section II. Section III reviews 
existing solutions, section IV is the system overview and 
section V and VI discuss the agents involved in greater 
detail. The user interface and details on integration is 
discussed in section VII. An evaluation of the system is 
given in section VIII and finally a conclusion is given in 
section IX.  

II. BACKGROUND 

A. The Recommendation Problem 

The problem that most engineering companies face is 
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trying to keep their employees skills updated and thus 
building their human capacity. To solve this employees are 
sent to training courses throughout their careers. Thus some 
companies have complete departments that deal with 
training. These departments take employee information and 
use it to look for courses from service providers. The 
departments often face the problem of not having enough 
training courses while the employees often feel that the 
courses offered will not benefit them. When the department 
or employees search for courses they are then met with 
numerous results thus are faced with information overload. 
An intelligent system that can use data from users, service 
providers and expertise from the training departments and 
advisors can improve the experiences that the employees 
have. 

B. Intelligent Agents and Multiagent Systems 

Agents are defined by Wooldridge [2] as computer 
systems that are situated in some environment and capable 
of autonomous action in this environment in order to meet 
its design objectives.  Intelligent agents [2] [3] are defined as 
agents that can react to changes in their environment, have 
social ability (communication) and the ability to use 
computational intelligence to reach their goals by being 
proactive. Agents are active, task-oriented – modeled to 
perform specific tasks – and are capable of autonomous 
action and decision making. Objects on the other hand are 
passive and noun-oriented – modeled to represent things. So 
the agent modeling paradigm can be looked at as a stronger 
encapsulation of localized computational units that perform 
specific tasks whereas objects model real-world “things” 
with specific attributes. 

By combining multiple agents in one system to solve a 
problem, the resultant system is a Multiagent system (MAS) 
[2]. These systems are comprised of agents that solve 
problems that are simple than the overall system. They can 
communicate with each other and assist each other in 
achieving larger and more complex goals. Thus problems 
that software developers had previously thought as being too 
complex [4] can now be solved, by localising the problem 
solving [5]. Multiagent systems have been used in predicting 
the stock market [6], industrial automation [7] and e-learning 
systems [8].  
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III.  REVIEW OF EXISTING SOLUTIONS 

There are numerous examples of information 
customisation systems that have been implemented. Simple 
examples are search engines [9]; personalised search engines 
[10] and online stores [11] that use user information to 
customise adverts and goods being sold. Personalised search 
engines differ from regular search engines in that they use 
user habits and preferences [11] to return better search 
results and recommend other searches that might be useful. 
Other intelligent recommender systems have also been 
implemented. An example is MASACAD, which is a Multi 
Agent System for Academic Advising [12]. It was developed 
to assist students in choosing courses to take in university. 
This system had the limitation that given new courses the 
system had to be retrained. It also is not able to 
autonomously find new courses as it was only capable of 
using one source of courses, which is the university 
database. Autonomous updating is a future problem focus in 
recommender systems [1] and is solved in the system 
implemented. 

IV. SYSTEM OVERVIEW 

The Multi-Agent solution designed and built for the 
recommendation problem has two main agents. The first 
agent is the recommendation agent and the second is the 
information retrieval agent. The configuration and 
interactions are shown Figure 1. The User Interface is the 
gateway to the system for the user, the Recommending 
Agent proposes a personalized list of training modules, and 
the Information Retrieval Agent searches a predefined list of 
service providers’ websites for course information and 
updates. The actions of the agents are described Figure 2 in 
reference to Figure 1. The proceeding sections describe the 
agents in further detail. 

 

 
Figure 2. Agent Action Procedures 

V. RECOMMENDATION AGENT 

The recommendation agent is a reactive agent that is 
responsible for using course information as well as user 
profile information to recommend courses to users using a 
ranking method. This is done by first searching the course 
database using the user profile and then ranking each course 
returned from the search. The recommending agent was built 
using the Sphinx [13] search engine and the IBM Agent 
Building and Learning Environment (ABLE) [14]. 

A. User Modelling 

To collect useful user information, user modelling had to 
be carried out [15]. For this to be done properly information 
in the domain of career guidance and counselling needed to 
be collected. The users of the system have to be modelled so 
as to use them in determining what they would consider as 
good courses. Through consultation with the Career 
Counselling and Development Unit (CCDU) at the 
University of the Witwatersrand the user attributes that 
would be most useful were found. When assisting students 

Figure 1. Multi-Agent Recommender System 



 
 

 

with their careers, counsellors at the CCDU look at a number 
of attributes. The ones chosen for the recommendation 
system are: 

• Interests (Professional and Personal) 
• Abilities (Experience in the chosen field and 

discipline) 
• Goals (Short term and long term) 

These attributes then make up the user profile that will be 
created for each user. The professional interests and 
discipline are used in the initial search of the course 
database. The returned results are then sent to the ranking 
neural network to then rank each course. The experience 
level and goals of the user were finalised in conjunction with 
companies Hatch SA and ThyssenKrupp engineering. The 
experience level was divided into junior, intermediate, senior 
and management. The goals included professional 
development, specialisation, marketing etc. The personal 
interests for example are entertainment, sport, outdoors etc. 
The personal interests, goals and experience level were used 
as inputs into the ranking structure. Professional interests 
depend on the discipline but these can be open pit mining, 
pumps, energy management etc. This information is stored 
in a database when a user creates a profile in the system. 

B. Course Information 

In order to use courses for recommending, certain 
information about the course is needed to distinguish courses 
from each other. Other recommendation systems faced with 
type of task have resorted to using a fixed number of courses 
and then training a computational intelligence tool such as a 
Neural network on these courses only [12]. This way of 
recommending is not scalable as when new courses are 
added then the training has to be carried out again. For this 
system keywords from the courses were used instead to 
distinguish between courses. Thus when a new course is 
added to the course database, its keywords are extracted and 
then used as the course information in the recommendation. 
This allows for a system that can grow its course list without 
much retraining or reconfiguration.  

From each course a maximum of 3 keywords were 
extracted. The recommendation system has a keyword 
extractor that is used by the Information Retrieval agent to 
extract keywords from the courses that it finds and adds to 
the course database. Controlled keyword extraction [16] is 
used so as to make sure that the keywords extracted are 
those available in our keyword database. The keyword 
database constructed for the MAS has 233 keywords 
belonging to the electrical, mechanical or both engineering 
fields. Each keyword has an id. Thus the keywords resulting 
from the courses can be used for training the recommender 
by using their id numbers. 

C. Searching the Database 

The course database was populated by finding courses 
from the different service providers. These courses then 
needed to be efficiently searched. For this a search engine 
tool was needed. The Sphinx search engine was used to sift 
through the databases given search strings. The search 
strings used in the searches were constructed from the 

professional interests of the user as well as their discipline. 
This customised the information returned to the user to their 
likes. The search engine indexes the course database each 
time a new course is added and is built in C++ for speed. 
Speed is rated at an average of 0.1 sec on 2-4 GB of text 
data. Thus searching does not take a lot of time and results 
can be processed quickly. After this search the courses are 
ranked. 

D. Ranking of Courses 

To recommend the courses to users ranking was used. 
This ranking used the course keywords as well as selected 
profile information. A classification multilayer perceptron 
neural network was used for the ranking. This neural 
network configuration is shown in Figure 3. 

 
Figure 3. Ranking Neural Network 
 

The general equation of a MLP neural network is shown 
below (1): 
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yk is the rank of the course, xj represents the inputs into the 
neural network and w represents the different weights 
between the nodes in the neural network. For the 
classification network the fouter

 
activation function is a 

logarithmic activation function and finner is the hyperbolic 
tangent function. Training is done using the back 
propagation algorithm [17].  

1) Data Collection 
To acquire data to train and test the ranking neural 

network, a survey was conducted online. Electrical and 
mechanical engineers from Hatch SA and ThyssenKrupp 
engineering were requested to fill in the survey. The survey 
asked the engineers to choose their discipline, professional 
interests, personal interests and long and short term goals. 
The engineers were then presented with a list of courses 
available and then required to choose their best 5. After 
choosing 5 courses, they then ranked them from 1 (highest) 
to 5 (lowest). This information was then recorded on our 
survey database. 250 training data sets were collected from 
the survey as well as 58 testing data sets. The survey was 
done in such a manner so as not be biased towards any bias 
that the companies might have. It was decided that the 
system should represent the views of the employees, who are 
the intended users, and not the companies. When asked to 



 
 

 

put in a section that could be controlled by the employer it 
was decided it would be best to represent the views of the 
users. Thus recommendations result from what a similar type 
of users are interested in. This type of recommendation is 
collaborative based filtering using regression (NN). 

2) Neural Network Training and Testing 
The data collected from the online survey was used for 

training the ranking neural network. The inputs into the 
neural network were the course keywords which were 
encoded into 8 bit binary numbers thus account for 24 input 
nodes. The profile information accounted for the rest of the 
inputs (6) thus resulting in 30 input nodes. Data from the 
profile is converted to numbers using the key Ids from the 
database. 

Data from the survey is directly accessed using a database 
import tool from the ABLE toolbox and then sent in as 
inputs into the neural network. This allowed for rapid use of 
the data without having to change its format. A typical 
learning algorithm, back-propagation, compares the NN’s 
output to the desired output, calculates an error, propagates it 
back through the network and (using a non-linear optimizing 
algorithm known as “gradient descent”) adjusts the NN’s 
weights to decrease this error [18].The numbers of hidden 
nodes were optimised first. This entails changing the number 
of hidden nodes in the MLP network and then training. The 
testing root mean square [19] error is then checked to see 
how well the network is performing on data it has not seen 
before. 400 training epochs were used with a learning rate of 
0.2 in the ABLE back propagation toolbox. Testing was 
done with data that was not used to train. The accuracy of 
the network was measured by the number of correct 
predictions (rank) within a tolerance of 1 ranking point. 
Different configurations were tested and are shown in Table 
1. 

TABLE 1 
 NEURAL NETWORK CONFIGURATIONS 

Configuration 32 40 32 -16 

RMS Error 0.137 0.15 0.151 

Accuracy 
(Tolerance of 1) 

90% 71% 72% 

 
32-16 represents a two hidden layer architecture. The 

network with 32 hidden nodes was chosen as the network to 
use for ranking. The top 5 – 15 ranked courses would then 
be displayed to the user. This then would complete the entire 
recommending process.  

VI. INFORMATION RETRIEVAL AGENT 

The information retrieval agent performs two important 
functions. Firstly it uses data mining to extract courses from 
service provider websites and then add or update them on 
the course database. Secondly it extracts keywords from the 
course description and uses the keywords to classify the 
course. This agent is based on a simple premise: give it an 
example of what you want it to retrieve, set it free and wait 
for it to return the results, and update the course database 
with any new information from these results. Its task is 
therefore two-fold: automated data extraction and 
integration, that is, what to do with the data once it is 

extracted. 

A. Data Mining 

The vast amount of poorly structured information that 
exists on public websites makes data extraction a non-trivial 
task. Furthermore, the content is often scattered over several 
places on the website, thereby requiring automated 
navigation like clicking links, filling in forms and crawling 
to other pages on the site. An inductive machine learning 
approach was taken to solve this problem. The agent is 
presented with sample training pages to learn extraction 
rules which consist of prefix and suffix patterns to mark the 
beginning and end of target content respectively. Once the 
rules are learnt, the agent then applies them to extract target 
items from the other pages [20]. 

The data extraction was implemented using the scRUBYt 
framework [21]. This framework, written in Ruby, allows 
for the use of a fast HTML parser library known as Hpricot 
[22] as well as the WWW::Mechanize library [23] that 
effectively provides web browsing functionality in code. 

B. Keyword Extraction and Classification 

The next task of the Information Retrieval Agent: to 
integrate the extracted data into the existing database, 
consists of automated keyword extraction and classification 
of the course data. The keywords are used both to describe 
the contents of the document and, as previously mentioned, 
by the Recommender Agent when ranking a given course. 
Classification on the other hand, improves the relevance of 
the recommended information that is, electrical engineering 
courses are not recommended to mechanical engineers and 
vice versa. 

A thesaurus-based keyword extraction algorithm known 
as KEA++, implemented in Java, was used to perform 
automated keyword extraction [16]. This machine-learning 
based algorithm works in two main stages: candidate 
identification and filtering. Candidate identification 
involves identifying candidate terms by segmenting the 
document into tokens on the basis of whitespace and 
punctuation, followed by the use of a pseudo matching 
technique [24] to match all n-grams against the controlled 
vocabulary (thesaurus). A set of attributes is then calculated 
for each term, the most important being the TF×IDF  score 
given by the equation [25]: 
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where freq(P,D) is the number of times P occurs in D, 

size(D) is the number of words in D, df(P) is the number of 
documents containing P in the global corpus and N the size 
of the global corpus. 

In the filtering stage, a Naive Bayesian classifier model, 
previously trained on manually indexed course documents, 
is then used to determine the probability that each word is an 
index term or not using the formula [25]: 
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similarly for P[no], where Y is the number of positive 

instances in the training documents, N is the number of 
negative instances (candidate phrases that are not 
keyphrases), t is a feature value derived from Equation 2 
above and f is the position of the first occurrence of the term. 
The overall probability that a candidate phrase is a 
keyphrase is then calculated as: 
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The top ranked candidates are then selected as the 

document keywords (a more detailed explanation of the 
algorithm is available in [25]). Once keywords have been 
extracted, classification is determined via a database look up 
that maps keywords to the engineering disciplines. Upon 
completion, the agent then checks to see if the particular 
course exists and updates the database if it does not. 

VII.  INTEGRATION AND USER INTERFACE 

A. Integration 

To integrate the agents and the modules such as the 
keyword extraction and user interface the Symfony [26] web 
framework was used. The framework allowed for the use of 
the Model View Control (MVC) paradigm [26] in building a 
web software application along with Rapid Application 
Development (RAD) [26]. The MVC paradigm allowed for 
an object oriented and modular approach for putting the final 
recommendation system together with a well built user 
interface. The model is the logic of the application, the view 
is the interface to the application and the controller connects 
the two together. This allows for developers to focus on 
logic without worrying about the look and vice-versa.  Thus 
the resultant complete system was integrated with features 
such as data security and validation added in without much 
effort. The parallel building of the interface was due to the 
MVC paradigm. Programmers need not know about the 
others modules or actions to build their part of the 
application. Object relational database [27] use was 
encouraged by the framework and used. All of the databases 
used in the recommender system are relational databases 
[27] built with MySQL database engine. This allows for 
speed and data integrity through using keys.  

B. User Interface 

The user interface was designed so as to be easy for a user to 
use. Ease of use in such systems is paramount so that the 
user need only focus on the task at hand and not on learning 
how to use the system. Through experience with simple user 
interfaces, such as that of Google [28], an intuitive interface 
was built. When the user has registered and logged on to the 
system he/she is met with their profile information, 
recommended courses and the search and navigation bar. 
This is illustrated in Figure 4.There are no complicated 

actions. The user can simply edit their profile which will 
automatically then refresh the recommended courses. The 
user can also search the course database themselves and 
view course information by service provider or discipline. 
The Symfony framework encourages the use of logic based 
programming as well making available tools to validate user 
actions. If there are errors in data entry then the system 
warns the user. Users are also not able to access other user’s 
information. The administration module for the user 
interface was setup to manage users, courses as well as the 
information retrieval agent’s configurations.  

 
Figure 4. User Interface 
 

VIII.  EVALUATION AND DISCUSSION 

A. Evaluation 

The initial goals for the project were to build functioning 
agents, have a functioning system that could be used for 
recommendation, a system that is easy to use by the target 
user that is stable and robust, and a system that is scalable 
and adaptable. The built system achieved these goals. The 
recommendation agent has a ranking accuracy of 90% with a 
tolerance of 1 ranking point as well as a fast search engine 
integrated. The information retrieval agent is able to go to 
websites and extract course information as well as classify 
these courses using a keyword extraction algorithm. The 
user interface was built to be easy to use and without any 
complicated procedures. User feedback during open day 
indicated that this goal was achieved.  

The final system is highly decoupled. This is shown by 
the use of different programming languages used in the 
implementation. The best language was used for the task at 
hand e.g. Ruby for Information Retrieval, C++ for the search 
engine. Thus if a different ranking algorithm needed to be 
used it can easily be replaced as the framework allows for it. 
The rules of communication within the agent are the only 
attributes that need to be kept. Thus the system is scalable as 
well as being adaptable. E.g. for adaptability, only a change 
in the user modelling and the courses/subject matter being 
investigated is needed. Thus the built system can be adapted 
to problem fields such as job searches, academic advising, 
business support systems etc. The system cost is low as all 
of the tools are open source or free to use. 

B. Analysis and Recommendations for Further Work 

The limitation of the built system is the use of the 



 
 

 

supervised learning neural network for ranking. Thus if a 
new discipline need be added then the neural network will 
need to be retrained with new survey data. To remedy this 
problem online learning methods [29] can be used as well as 
modifying the current system to be able to provide user 
feedback. Thus as more users use the system the system can 
perform better. This would be termed content based filtering 
recommendation. User feedback in terms of ratings of 
courses attended can be used as an added input into the 
system [29]. 

Due to time constraints keyword and document clustering 
could not implemented. This would offer better 
classification of courses [30] as well as offer insight into 
how multidisciplinary courses are related.  

IX. CONCLUSION 

The Multiagent system approach for solving the training 
course recommendation problem is successful in reducing 
the information overload while recommending relevant 
courses to users. The system achieves high accuracy in 
ranking using user information and course information. The 
final system is scalable and has possibilities for future 
modification and adaptability to other problem domains. 
Improvements to the system can be made and the system 
forms a good platform for future research into the use of 
computational intelligence in recommender systems. 
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