
Optimisation of Timing Properties in a Platform Independent Manner

Abstract
Large-scale complex embedded systems pose unique

problems. To reduce overall development times, there is a
need to develop the system in a concurrent fashion,
involving the development and verification of software at
the same time as designing, building and verifying the
hardware. This requires a two-phase trade-off analysis
approach to the hardware software co-design problem. The
first phase is platform independent: it allows system
requirements to be met and also supports other important
objectives, e.g. scalability, upgradeability. The results of the
first phase include deriving requirements and design
constraints placed on the platform dependent phase (eg.
resource budgets including time). The second, platform
dependent phase, chooses the actual software and hardware
implementation that satisfies the requirements derived in
phase 1. This paper addresses the first part of the problem
through trade-off analysis. This establishes the design
decisions in a traceable manner whilst capturing the
rationale and assumptions made. It then searches the design
space for the solution that best meets the system s
objectives. The approach has been developed for the needs
of critical systems and has already been applied to the
logical design of systems.

1 Introduction

Large-scale embedded systems, such as those found in
aerospace applications, are characterised by their functional
complexity, size (in terms of required software / hardware),
relatively long lifecycles and requirement for validation and
verification of their fitness for purpose prior to deployment
[1]. Often in large systems, the unit cost of hardware is not
an overriding concern

the relatively few units made mean
one-off development costs are the prime cost consideration.

Conventional development processes for systems contain
an early hard partitioning of system functionality between
hardware and software. It is performed with minimal use of
trade-off techniques, but instead relying on high-level
systems engineering principles [2]. Essentially, a best
guess is made when functions are partitioned between
hardware and software. Invariably an underestimate of the
amount of software is made (hence the computing platform
is under resourced).

One consequence of the development process is that
hardware is developed in isolation from software, usually
prior to software development (due to the long lead times
for custom hardware or as yet unavailable hardware) and
only later are they integrated. A critical problem occurs
when / if additional functions are identified after system
partitioning, these are usually pushed into software as the
hardware is fixed. The hardware is considered fixed as it is
expensive to redevelop the hardware to cope with either
additional functions or to provide increased computing
resource for the software components.

Codesign [6] recognises that systems implement required
functions using a mixture of hardware and software
components. Trade-offs can be explored between the choice
of whether system functionality is implemented in hardware
or software. Given a partitioning of functionality into
hardware and software components, design / synthesis of
hardware and software can proceed in parallel.
Subsequently, the separate hardware and software are
integrated to form the final system. A key element of the co-

design process is that alternatives for the hardware /
software partitioning are evaluated.

For this approach to be successful, it is important that
requirements are established for properties and operations
across the system s boundaries (e.g. between hardware and
software). These requirements are referred to as interface
requirements. The interface requirements allow change to
be managed such that two distinctly different parts of the
design can be developed in separation. To reduce the impact
of changes (i.e. allow the designs to proceed in relative
isolation), the content of the interface requirements should
be chosen so that not only are the initial design objectives
met but there is flexibility within the design to support
change. The use of interface requirements and reducing the
impact of change also allows some level of analysis, albeit
with inaccuracies, when only scant or approximate design
data is available earlier on in a project.

It should be noted that managed change is considered to
be a secondary quality attribute of the system, i.e. it is not
considered essential to the system s operation. Primary
quality attributes are those essential to the system s
operation. An example of a primary quality attribute is the
meeting of timing requirements in hard real-time systems.

In the timing domain an example of an interface
requirement is a set of timing budgets (e.g. Worst-Case
Execution Times (WCET)) and attributes (e.g. offsets and
priorities) for the tasks that if met lead to the system s
timing requirements being met. To support managed change
the timing budgets and timing attributes should be chosen so
that the scalability and flexibility of the system is improved.
An example of scalability is the ability to add additional
tasks into a system without preventing the existing tasks
from meeting their timing requirements.

A key issue when defining any part of the system, eg.
timing budgets, is the trade-offs between different
objectives of the system. For example, having larger
budgets may mean the software can be developed cheaper
because it doesn t have to be optimised as much. However
larger budgets would make the design of the hardware more
difficult in that it needs greater optimisation for the
particular application or leads to the use of more powerful
(and hence expensive

expensive can be in terms of cost,
power etc) hardware components. The tensions between
different objectives need to be traded off during the design
process.

Once the interface requirements have been established,
both hardware and software should be designed so that these
interface requirements are upheld on both sides of the
interface. This second phase of the trade-off analysis
problem is not addressed in this paper. The budgets derived
should be appropriately proportioned where possible. That
is, there should be a significant penalty in giving a smaller
budget to a larger/more complex piece of functionality
unless other factors mean it is better to spend more time and
money on a particular part of the system. Other work has
shown how such budgets can be used to support the
development of large systems where portability between
hardware platforms is a key success criterion [8].

This paper contends that important benefits arise by
embedding a co-design process as a sub-process within the
conventional system development process. This enables
early partitioning of functions whilst still allowing functions
identified later to be subject to a co-design process.

To support this approach, three main requirements must

be met:
1. The structured capture of design choices, definition of

system objectives and design information for later use
in the co-design process or as part of design
certification.

2. As part of the early partitioning, resource is reserved
for future functions.

3. The specification of timing properties such as offset,
WCET and Best-Case Execution Time (BCET) budgets
etc that allow the systems timing requirements to be
met. These properties are shown to be met at integration
time.

The contributions of this paper are:
1. The application of the trade-off analysis to the problem

of timing in the development of systems in order to
capture the design choices and the assessment criteria
designs are judged against;

2. The use and derivation of interface requirements
between the software and underlying platform to help
manage complexity;

3. The use of scenario-based analysis to assess secondary
quality attributes, such as scalability, in conjunction
with traditional timing analysis to assess primary
quality attributes, such as whether timing requirements
are met.

The trade-off analysis method is summarised in section 2.
Item (1) from the list is presented in section 3. Section 4
discusses the differing requirements and relationship with
other methods. Section 5 of this paper presents our
framework for determining the optimum design solutions to
satisfy items (2) and (3) from the list. The approach is
evaluated in section 6.

2 Overview of Design Trade-Off Analysis
Method

In [5] our method for architectural trade-off analysis for
use within a systems engineering process was presented. It
should be noted that [5] applies the same method in this
paper but to the problem of the logical design systems. The
trade-off analysis together with the inserted co-design
process has the following properties:

Derivation of choices

identifies where different
design solutions are available for satisfying a goal.

Manage sensitivities

identifies dependencies between
components and design decisions.

Evaluation of options

allows evaluation of alternative
solutions against required properties / specification.

Influence on the design

identifies constraints on how
components should be designed to support the meeting
of the system s overall objectives.

Collection of design rationale

forms a repository for
design decisions to aid traceability throughout the
design.

The proposed approach could be used within the nine-step
process of the Architecture Trade-Off Analysis Method
(ATAM) [3]. The key difference between our strategy and
other existing approaches, e.g. ATAM, is the way in which
quality attributes are derived. (Quality attributes are
assessment criteria used to evaluate solutions, e.g. does the
design support predictability?) Our proposed approach was
chosen due to the following reasons.

The techniques used in our approach are already
accepted and widely used.

The techniques offer strong traceability and the ability
to capture design rationale.

Information generated from their original intended use
can be reused, rather than repeating the effort.

The method is equally intended as a design technique to
assist in the evaluation of the architectural design and
implementation strategy as it is for evaluating a design
at particular fixed stages of the process.

Figure 1 provides a diagrammatic overview of the
proposed method. Stage (1) of the trade-off analysis method
is producing a model of the system to be assessed. This
model should be decomposed to a uniform level of
abstraction. Currently our work uses class diagrams from
UML for this purpose; however it could be applied to any
modelling approach that clearly identifies components and
the interfaces between the components.

In stage (2), the key objectives and properties of the
system are decomposed into detailed design requirements
that need to be satisfied. Rationale for these detailed
requirements is encapsulated by structured arguments, along
with the appropriate context, identifying where design
choices are available. The arguments are structured using
Goal Structuring Notation (GSN) [4].

Key properties of interest include: lifecycle cost,
dependability, and maintainability. Clearly these properties
can be broken down further, e.g. lifecycle cost into
development, future upgrades and maintenance. Objectives
of interest include; managed change, ease of integration and
ease of verification.

Stage (3) uses the structured argument to further derive
design and verification options, and to determine assessment
criteria to judge how well a particular design solution meets
the system objectives. Other approaches for deriving
assessment criteria from systems objectives include Goal
Question Metrics (GQM) [12]. Initially in the early stages of
design, the evaluation may have to be qualitative in nature
but as the design is refined then quantitative assessment may
be used where appropriate. Part of this activity may use
representative scenarios to evaluate the solutions. In the case
of timing, representative scenarios will include situations
where the software/system is changed which leads to
modified task execution times and added/removed tasks.

Model of the System

Arguments
Containing Quality

Attributes

Stage 2 - Produce Arguments
for Key Objectives/Properties

Stage 1(a) - Produce Initial Architecture Model

Quantitative and
Qualitative

Assessment Criteria

Stage 3(b) - Extract
Assessment Criteria

Design Evaluation
Results

Stage 3(c) - Evaluate
Architectural Design

S
ta

ge
 1

(b
)

-
Im

p
ro

v
e

D
e

s
ig

n
(w

h
e

re
 n

e
ce

ss
ar

y)

Interface
Requirements

Accept Design

Stage 4(b) - P
roduce Refined

Architectural Model

(possibly with Multi-C
riteria Optimisation

Technique)

Scenarios

Design Choices

Stag
e 3

(a
) -

Extr
ac

t

Desig
n C

hoic
es

Stage 4(a) - Derive
Interface Requirements

Static Analysis and
Test

Stage 3(e) -

V&V

Stage 3(d) - Scenario-
Based Assessment

Figure 1 - Overview of the Method
Before stage (4) of the process, based on the findings of

stage (3) the design is modified to fix any problems that are
identified

this may require stages (1)-(3) to be repeated to

show how the revised design is appropriate. When deciding
on design solutions, the results from more than one
assessment criteria have to be traded-off because a design
modification that suits one assessment criterion may not suit
another. For example, introducing an extra processor may
reduce the load across the processors in the system making
task schedulability easier. However it may increase the load
on the communications bus making message schedulability
more difficult and increasing power consumption.

When the design modification process is complete and all
necessary design choices have been made, stage 4(a) of the
process extracts interface requirements from the arguments.
Then, as part of stage 4(b) of the process, the process
returns to stage (1) where the system is decomposed to the
next level of abstraction using guidance from the arguments.
Components reused from another context could be
incorporated as part of the decomposition. Only proceeding
when design choices are complete (and any identified
problems are fixed) is preferred to allowing trade-offs
across components at different stages of decomposition
because the abstractions and assumptions are consistent.

In this paper the refinement of the design (stage (4) of the
process) is performed automatically using multi-criteria
optimisation. Automatic optimisation is possible in this case
because the assessment criteria can be analysed for in a
quantitative fashion by tools based on static analysis and
scenario-based assessment. Other than reducing the
workload of engineers, another advantage of automatic
optimisation techniques is their ability to trade-off the needs
of different assessment criteria and balances any tensions
between different system properties. There has been some
previous research into the topology of optimisation
algorithms including the use of optimisation for the software
allocation problem, for further details refer to [11].

3 Application of Trade-Off Analysis

A key part of architecture trade-off analysis is deriving the
top-level properties and objectives (i.e. goal) for the systems
such that arguments can be produced that systematically
break them down to lower-level goals. These goals are then
used to form assessment criteria that can be used to judge
whether a proposed solution is appropriate. During the
production of these arguments, choices of how they can be
supported (e.g. implement in hardware or software) will
emerge and assumptions identified. (The assumptions are
important when trying to reuse designs since they allow the
basis for the existing components design to be evaluated in
the new context.) The following section proposes some
properties for use in derivation of the interface requirements
that later are developed into arguments that can be used.

3.1 Key Properties

The following objectives are considered as being
important. It should be noted that most objectives are
derived from the overarching objective of maximising profit
in some way.

Correctness

using appropriate verification techniques
sufficient evidence needs to be gathered that what is
being produced meets its requirements. Sufficient is
dependent on the nature of the application, for example
it would be expected in critical systems development
that more evidence is needed than for non-critical
systems. In general, hardware development is
considered to have verification techniques that can

provide stronger evidence for correctness.

Managed change

the system produced should be

changeable or upgradeable in an efficient manner. For
most applications, typical change patterns or potential
upgrades can be predicted with reasonable confidence.
For some applications, there are known killer changes
that are likely to occur and result in significant re-
design effort being needed. In general, software is
considered easier to change but as Ariane 501
demonstrated the assumptions that exist within the
design and implementation of a component being
reused are not always handled appropriately.

Efficiency

the system produced should make the best
use of the available resources. The efficiency of a
technology is strongly dependent on the nature of the
technology. For instance, a FPGA is an effective means
(in terms of the amount of silicon used is small) of
implementing logic such as found in Statecharts but
may not be as effective at implementing floating point
operations.

Sufficiency

the technology used in the implementation
must be able to represent the design. There are many
factors here. Considering just timing,

o Von Neumann architectures are often
considered to have the benefit of providing raw
processing power, however for applications where
hard real-time guarantees are needed the difficulty in
modelling modern Von Neumann processors can
lead to large amounts of pessimism in the analysis
that reduces/eliminates the benefits [14].

o FPGAs are better at handling concurrency [7].
o FPGAs have little or no difference between

their best, average and worst-case performance
whereas Von Neumann do [7]. Variability in timing
behaviour makes many applications, e.g. control
systems, harder to produce [7].

The rest of this paper considers sufficiency and its
relationship to architectural design in greater detail.

4 Relationship with Existing Methods

There are a wide variety of existing methods for deriving
interface requirements between hardware and software and
then exploring the search space. These methods have
differing capabilities. For an overview of these refer to [6].
The approach being developed within this paper is different
for a number of reasons that originate from the need to
support large-scale complex systems that take many years to
develop. The main differences are:

The need for flexibility to account for incomplete
specifications and changing designs. Hence the design
derived should be able to handle change and not just
meet the current requirements.

The need to be able to tolerate failures.

The need to be able to partition up parts of the design,
e.g. individual sub-systems or processors, so that
individual suppliers can work in isolation. This also
means that the partitioning and allocation needs to be
flexible otherwise a constant re-negotiation would be
needed between suppliers and customer which would
be expensive.

The need to defer the choice of implementation solution
with respect to hardware and software. For this reason a
two stage process is proposed that produces an
allocation and assigns properties to the system but the
final implementation details is not decided. For this
reason interface requirements are established between

the two phases. In the case of timing, these interface
requirements are in the form of timing budgets.

The following section describes the framework we have
been developing for the timing aspects of phase 1 of the
process. Current plans is to use the constraints and interface
requirements derived from phase 1 to drive phase 2 of the
process which could be based on an existing technique.

5 Co-simulation and Optimisation

5.1 Cost Function
Stage 4 of the design assessment is exploring the available

design solutions for the combination that best meet the
system s objectives. From timing perspective analyses need
to be performed to demonstrate the following:
1. Normal (showing timing requirements are met).
2. Determining how the task set copes with extra tasks

being added and changing execution times (WCET and
BCET).

3. Tasks have low jitter.
4. Scheduling is fault tolerant, i.e. some tasks execution

can be repeated, in case of failure, without affecting the
ability to meet timing requirements.

For the purposes of this work, it is assumed that no re-
allocation of tasks to processors or change to the budgets is
made when the nature of the task set changes or when a
fault occurs. Instead it is expected that the assignment
derived for the task attributes and budgets can cope with the
changes or failures. It should be noted that this does not
preclude the use of replication to also provide fault
tolerance. In cases where changes to the task set leads to the
requirements being met, then it would be expected that a re-
allocation and re-assignment of budgets would then be
performed.

Since the assessment is to be performed in a platform
dependent manner, actual WCETs and BCETs are not
known. Therefore budgets are to be derived for WCETs and
BCETs. However rather than generate completely abstract
and infeasible budgets, some control is provided by one of
the assessment criteria being whether the budget is broadly
in line with an estimate. This estimate is found by a
combination of; whether the relative budgets between tasks
is comparative to the tasks execution times on another
platform, and whether the budgets are comparative to the
tasks size and complexity. Later in the development of the
system, the estimates could be obtained by analyzing or
measuring each task s actual execution time. Using these
estimates though do not prohibit a set of budgets being
derived that mean particular tasks need more effort and
optimisation to meet their budgets if it provides enough
benefits in other areas.

The optimisation was performed using a simulated
annealing algorithm and a cost function whose parameters
(e.g. parameters) are described in Table 1.

Assessment Criteria Weighting

Bonus
Factor

Penalty
Factor

Individual task schedulability 500 per task

5 5
Multiple task schedulability 500 per

dependency

5 5

Number of processors > 1 10000 N/A N/A
Task fault tolerance 100 N/A N/A
Task execution variability 20 N/A N/A
Relative size 2 N/A N/A
Task scalability 10 N/A N/A
Execution scalability 10 N/A N/A

Table 1 Weightings for Each Assessment Criteria

The simulated annealing algorithm is chosen rather than
standard static search techniques due to its ability to scale to

large systems [13]. It is chosen over other heuristic search
techniques due to its ability in finding good solutions
assuming it does not get stuck in a local minimum [13]. To
prevent this, if a best solution is not found after a defined
number of moves, then the algorithm is re-seeded with a
completely new solution. Section 5.2 contains further details
of the algorithms.

The table has four columns; the first being the assessment
criteria, the second the standard weighting (found through
evaluation) used for the scoring mechanism and evaluation
method presented in later in this section, the third a bonus
factor used in cases such as when all the assessed timing
requirements are met, and the fourth a penalty for when all
the assessed timing requirements are not met.

The results of the analysis are converted to a score that
can be used in the cost function by the following means:
1. Individual task schedulability: for each task that is

schedulable (i.e. meets its requirements) a score of +1 is
given and for each unschedulable task a score of

PENALTY is given (e.g. PENALTY is equal to +5). If
all tasks are schedulable, then the final result is
multiplied by a bonus factor (e.g. +5) to bias the results
in favour of a completely schedulable solution.

2. Multiple task schedulability: for each requirement met
a score of +1 is given and for each requirement not met
a score of

PENALTY

is given. Again if all
requirements are met, then a bonus factor is applied to
the result.

3. Task fault tolerance: +1 for each task that is re-
runnable without affecting the ability to meet timing
requirements.

4. Task execution variability: -1 for every clock tick that
each task s WCET is greater than its BCET, i.e. sum for
all tasks of (WCET-BCET).

5. Number of processors: -1 for every processor in the
system greater than one. The reason for every processor
greater than one being used is that we can t avoid
having one processor.

6. Relative size: relationship between two tasks
estimated WCET (EWCET), which is approximated via
metrics or transformation of WCETs from other
processors, and their budgeted WCET. That is,

i j

j

i

j

i

WCET

WCET
EWCET

EWCET

where i, j are individual tasks in the task set
The aim of relative size is to indicate that the tasks
WCET budgets are in line with their estimated WCET.

7. Execution scalability: +1 for every clock tick that
each task s WCET is greater than its EWCET, i.e. sum
for all tasks of (WCET-EWCET). To penalise WCET
budgets being assigned that are smaller than the
estimated WCET, a score of 10 for every clock tick
that each task s WCET is less than its EWCET, i.e. sum
for all tasks of (WCET-EWCET).

8. Task scalability: +1 for every extra randomly
generated task that can be added to the task set without
affecting the ability to meet the system s requirements.

5.2 Searching the Design Space

The simulated annealing algorithm used in our work can
be described by the following pseudo-code. The pseudo-
code features re-seeding which is used to prevent the
solution getting trapped in part of the search space.

randomly generate an initial model

loop for each temperature(T)

if improved solution not found after N moves

re-seed solution with completely new solution

loop for number of times inv prop to T

select new model

move to new model

calculate cost function elementsfunctiont

scoreweightings
cos

if new model has higher cost value

adopt it

else

draw random number

decide whether to adopt it

end random moves loop

end temperature loop

A new model is found by modifying the current model
of the system in a randomly selected way from a number of
ways. Modifying the current model is equivalent to using a
new design tactic as discussed in [10]. Examples of
design tactics are the use of a technique such as fixed
priority scheduling. The following is a list of ways in which
the current solution is modified in the simulated annealing
algorithm.
Processor level for randomly chosen task or message
1. Execution times (worst and best-case)

increase,
decrease or random.

2. Ordering increase, decrease or random.
3. Offset increase, decrease or random.
4. Release jitter increase, decrease or random.
System-Level
1. Task allocation

move a randomly chosen task
between processors. This could lead to the addition of a
new processor.

2. Processor remove a processor from the system.

6 Evaluation

The evaluation presented in this section is intended to
show how the framework uses a set of requirements and an
estimated WCET to generate what it considers the best
solution. To demonstrate the way the framework operates in
the available space, a small example with few tasks is
chosen. However other work we have performed has shown
that the approach is equally applicable to large-scale
systems. In addition, a great deal of other work, including
[11], has shown heuristic search algorithms can handle the
scalability to allocating tasks for large systems.

For the purposes of the example considered the Fixed
Priority Scheduling approach is used [9]. However the
theory developed can be applied to other scheduling
approaches or even to decide between scheduling
approaches for a particular problem. The priorities are
initially derived according to the deadline monotonic
priority ordering [9] where the tasks with the shortest
deadline have the highest priority. In this case where tasks
have an equal deadline an arbitrary decision is taken on
which has the highest priority.

The example consists of 10 tasks with initial resource
utilization (equal to the sum for all tasks of EWCET/Period)
of 1.70

initial resource estimate is based on the estimated
WCETs). The tasks have 2 dependency requirements of

which one is a separation requirement and one is a
transaction requirement. The requirements and initial
attributes are depicted in the following tables. Table 2 gives
the individual task requirements and attributes. Table 3
gives the requirements for multiple tasks.

Id Perio
d (T)

Deadline

(D)
EWCET

Jitte

r
Req

Priority (P)

0 90 40 19 N/A

3

1 80 70 15 N/A

6

2 100 100 20 N/A

10

3 90 80 18 N/A

7

4 70 60 11 N/A

5
5 70 20 10 N/A

1
6 70 50 14 N/A

4
7 70 30 13 N/A

2
8 100 80 11 N/A

8
9 100 80 11 N/A

9
Resource Utilisation 1.70

Table 2 - Task Requirements and Initial Attributes

Precedence

Id

Type 1st

Task

2nd

Task

Min. Separation
Requirement (S)

End-to-End
Deadline (TD)

0

Separation

6 7 2 N/A
1

Transaction

8 9 N/A 90

Table 3 - Task Dependency Requirements

For the given example, Table 1 shows the weightings that
were used in the context of this specific system. Table 1
shows that the greatest emphasis is given to ensuring task
requirements are met (both individual tasks and
dependencies between tasks) and to reducing the number of
processors within the system. (It should be noted that some
of the assessment produces outputs of markedly different
quantities.) For example, the degree of variability in
execution time (measured in clock ticks) between a task s
WCET and BCET added up for all tasks is likely to be
significantly greater than the number of processors (in
addition to the minimum of one) used.

Id

T D EWCET

BCET

WCET

A

O

RJ

P R

0

90

40 19 14 20 0

3

1 3 34

1

80

70 15 20 20 2

4

0 6 50

2

100

100

20 20 20 0

4

3 10 77

3

90

80 18 17 20 0

5

4 7 59

4

70

60 11 11 11 2

11

1 5 38

5

70

20 10 9 10 0

4

0 1 14

6

70

50 14 8 15 2

2

2 4 19

7

70

30 13 19 19 1

4

3 2 26

8

100

80 11 12 13 1

8

3 8 43

9

100

80 11 19 20 1

9

2 9 63

Resource Utilisation 2.01
Resource Utilisation for Processor 0 78.7
Resource Utilisation for Processor 1 60.1
Resource Utilisation for Processor 2 62.1

Table 4 - Task Schedulability Results

The results of the analysis are presented in Table 4 and
Table 5. In Table 4, R represents the Worst-Case Response
Time (WCRT), A the processor to which a task is allocated,
O the offset for a task, and RJ the release jitter for a task.

Precedence

Id

1st Task

2nd Task

S TD

Actual Separation

WCRT

0

6 7 2 N/A

7 N/A
1

8 9 N/A

90 N/A 55

Table 5 - Task Dependency Results

The following is a discussion of the solution found with
respect to each assessment criteria.

Individual task schedulability

All the

individual tasks are schedulable so a maximum score is
achieved here.

Multiple task schedulability - All the task

dependency requirements are met so a maximum score
is achieved here. It should be noted that the solution
derived is such that the majority of the dependent tasks
are situated on a single processor

i.e. A=1. This

makes schedulability easier as there are no time critical
messages since separation requirements do not require
messages

Number of processors (greater than 1) - The
results show that the solution found features three
processors. Since the resource usage of the revised task
set is greater than two and less than three, then three
processors is the minimum number that can schedule
the system. Therefore with respect to this criterion an
optimum solution has been found.

Task fault tolerance - The resource utilisation on
each processor is well balanced which helps increase
the likelihood that tasks can be executed for a second
time in case of a failure being detected. For instance,
Table 6 presents the schedulability analysis results for
the situation where task 1 is re-executed due to an error.
In this case all tasks are still schedulable. The results
from the co-simulation did however show that not all
cases of task failure and subsequent re-execution mean
the entire task set remained schedulable. However in
the majority of these cases, it was the lowest priority
task on a particular processor that became
unschedulable.

Task execution variability

The results indicate
that the difference between the BCET and WCET is
small (i.e. less than 25% difference) in most cases. The
exception to this rule is the task with identifier 6 whose
BCET is 8 and WCET is 15.

Relative size

The results indicate that the WCET
budgets chosen are broadly inline with the EWCETs
and in all cases the WCET budget is greater than the
value of EWCET.

Task scalability and execution scalability

The
resource utilisation on each processor is well balanced
which helps increase the degree of scalability that is
possible.

Id

T D EWCET

BCET

WCET

A

O

RJ

P R
0

90 40 19 14 20 0

3 1 3 34

1

80 70 15 20 20 2

4 0 6 70

2

100

100

20 20 20 0

4 3 10

77

3

90 80 18 17 20 0

5 4 7 59

4

70 60 11 11 11 2

11

1 5 38

5

70 20 10 9 10 0

4 0 1 14

6

70 50 14 8 15 2

2 2 4 19

7

70 30 13 19 19 1

4 3 2 26

8

100

80 11 12 13 1

8 3 8 43

9

100

80 11 19 20 1

9 2 9 63

Table 6 Fault Tolerance Schedulability Results

7 Conclusions

This work has shown how trade-offs in the timing aspects
of how software can be mapped onto hardware can be

handled. The approach made use of interface requirements
between the hardware and software such that each of these
design processes can be performed independently. Firstly, a
number of design choices and assessment criteria were
derived from the top-level objectives of the system using a
systematic method that captures the rationale behind the
design decisions in a traceable manner. Secondly, an
experimental method for evaluating a particular design was
produced that combined static analysis of the baseline
system with scenario-based assessment of how the system
may behave in the presence of change and failures.

Using the design choices available and the experimental
method, optimisation tactics were employed to determine
the best solution to a particular problem. Given this best
solution, the hardware and software can be development in
relative independence. At integration time, it would have to
be shown that the low-level platform design of the hardware
is sufficient to meet the interface requirements for the
software that has been developed. In cases where the
interface requirements are not met, then a new solution
would be to be found using the framework.

Future work could include developing phase 2 of the
process and incorporating other objectives such as power.

8 References
[1] Y. Yeh, Dependability of the 777 Primary Flight Control

System, Proceedings of the 5th IFIP Conference on
Dependable Computing for Critical Applications, 1995.

[2] D.M. Buede, The Engineering Design of Systems, Wiley,
2000.

[3] R. Kazman, M. Klein, and P. Clements, Evaluating Software
Architectures - Methods and Case Studies. Addison-Wesley,
2001.

[4] T. Kelly, Arguing Safety

A Systematic Approach to Safety
Case Management, DPhil Thesis, YCST-99-05, Department
of Computer Science, Univ. of York, 1998.

[5] I. Bate, T. Kelly, Architectural Considerations in the
Certification of Modular Systems, Proceedings of 22nd

International Conference on Computer Safety, Reliability and
Security (SAFECOMP 2002), 2002.

[6] G. de Micheli, R. Ernst, W. Wolf, Readings in Hardware /
Software Codesign, pub. Morgan Kaufmann, 2002.

[7] M. Ward, N. Audsley, Hardware Compilation of Sequential
Ada, Proc. of CASES 01, pp. 99-107, 2001.

[8] K. Shin, Y. Chang, A Reservation-based Analysis for
Scheduling Both Periodic and Aperiodic Tasks, IEEE Trans.
on Computers, 44(12), pp. 1405-1419, 1995.

[9] I. Bate, Scheduling and Timing Analysis of Safety Critical
Hard Real Time Systems, Phd Thesis, Department of
Computer Science, Univ. of York, YCST-99-04, 1999.

[10] F. Bachmann, L. Bass, M. Klein, Illuminating the
Fundamental Contributors to Software Architecture Quality,
Software Engineering Institute, CMU/SEI-2002-TR-025,
2002.

[11] M. Nicholson, Selecting a Topology for Safety-Critical Real-
Time Control Systems, DPhil Thesis YCST-98-08,
Department of Computer Science, University of York, UK,
1998.

[12] V. Basili, H. Rombach, The TAME Project: Towards
Improvement-Oriented Software Environments, IEEE Trans.
on SE, 14(6), pp. 758-773, 1988.

[13] V. Rayward-Smith, I. Osman, C. Reeves, G. Smith (Editors),
Modern Heuristic Search Methods, Wiley, 1996.

[14] J. Engblom, A. Ermedahl, F. Stappert, Validating a Worst-
Case Execution Time Analysis Method for an Embedded
Processor, Dept. of Information Technology Tech. Report
2001-030, Uppsala University, 2001.

