
FPGA’s as Cryptanalytic Tools

Abstract

This paper presents FPGA1 implementations of
two cryptanalytic attacks against DES2. Linear
cryptanalysis results from Matsui’s work [2] but
could not be applied as such and had to be modi-
fied to face hardware constraints. We broke a key in
about 14 hours on one single FPGA3, becoming the
fastest implementation to our knowledge. In paral-
lel, we evaluated the possibility of a cryptanalytic
time-memory tradeoff using distinguished points.
The original idea from Hellman [3] has never been
implemented. We performed first experimental re-
sults and designed a machine that can break a 40-
bit DES in about 15 seconds, with a high success
rate (72%), using one PC4. An exhaustive search
of the key on the same PC would have taken about
50 days.

1 Introduction

One objective of cryptography is to solve the con-
fidentiality problem that can be explained as fol-
lows. Suppose that someone wants to send a mes-
sage to a receiver, and wants to be sure that no-
one else can read the message. However, there is
the possibility that someone else opens the letter
or hears the electronic communication. In crypto-
graphic terminology, the message is called a plain-
text. Encoding the contents of the message in such
a way that it hides its contents from outsiders is
called encryption. The encrypted message is called
ciphertext. The process of retrieving plaintext from
ciphertext is called decryption. Encryption and de-
cryption usually make use of a key, and the coding
method is such that decryption can be performed
only by knowing the proper key.

1FPGA: Field Programmable Gate Array
2DES: Data Encryption Standard
3VIRTEX1000BG560
4256MbytesRAM/350MHz

The Data Encryption Standard is an encryp-
tion/decryption algorithm developed in the mid-
1970s. It was turned into a standard by the US
National Institute of Standards and Technology
and was also adopted by several other governments
worldwide. It was and still is widely used in the
financial industry, even though DES is supposed to
be replaced by AES5 for the next decade. Some In-
ternet protocols still uses DES with a 40-bit key and
even today, there are no cryptanalytic techniques
that would completely break DES in a structural
way. Indeed, the only real weakness known is the
short key size.

Cryptanalysis is the science of breaking ciphers.
In this work, we focused on cryptanalytic tech-
niques to break the DES cipher.

2 Overview of Cryptanalytic

Techniques

Generally speaking, a block cipher allows to en-
crypt a n-bit plaintext, using a k-bit key to pro-
duce a n-bit ciphertext. Cryptanalysis is equiva-
lent to the searching problem of finding the correct
secret key K in a set of 2k possible keys and allows
two extreme solutions: exhaustive search and table
lookup. In exhaustive search, the ciphertext can
be deciphered under each key and the result com-
pared with the known plaintext. If they are equal,
the key tried is probably correct. Occasional false
alarms can be rejected by additional tests. In table
lookup, the cryptanalyst first enciphers some fixed
plaintext P0 under all possible keys to produce 2k

ciphertexts. These are sorted and stored in a table
with their associated key. When a user chooses a
new key, he provides (in a chosen plaintext attack)

5AES: Advanced Encryption Standard

1



the cryptanalyst with the encipherment of P0:

C0 = EK(P0) (1)

Where EK(∗) denotes the enciphering operation
under key K. Because the table is sorted by ci-
phertexts, the cryptanalyst can find C0 and its as-
sociated key in at most log2N operations using a
binary search. The 2k operations required to com-
pute the table are not counted here because they
constitute a precomputation task that can be per-
formed beforehand. However, we must ensure that
the precomputation is not excessive.

The objective of linear or differential cryptanal-
ysis is to recover some key-bits in less operations
than an exhaustive key search over all possible keys.
Linear cryptanalysis takes advantage of possible
input-output correlations over a few rounds of an
algorithm6 and differential cryptanalysis is possible
if there are predictable difference propagation over
a few rounds of the algorithm.

Finally, the aim of a time-memory tradeoff is
to mount an attack which has a lower online pro-
cessing complexity than exhaustive search and a
lower memory complexity than table lookup. In the
next sections, we detailed first hardware implemen-
tations of linear cryptanalysis and time-memory
tradeoff. Other attacks exists and are out of the
scope of this work.

3 Our Implementation of DES

DES is a block cipher with 64-bit block size and
56-bit keys. As the understanding of some parts of
the algorithm are necessary in the next sections, we
give a short description of it. A complete descrip-
tion can be found in [5]. The algorithm proceeds
in three steps:

1. The given plaintext P0 is divided in two parts
of 32 bits according to an initial permutation
IP : IP (P0) = L0R0.

2. 16 iterations of a round function are computed
and sixteen keys K1, ...,K16, each bit strings of
length 48 are derived from the key K.

6Encryption/decryption algorithms usually uses consec-
utive identical rounds

3. The inverse permutation IP−1 is applied to
the bit string L16R16, obtaining the ciphertext
C0.

The key point of the algorithm is the round func-
tion illustrated by Figure 1 where F is a non-linear

Figure 1: DES encrypt round

function and the symbol ⊕ is the bitwise XOR op-
eration. The non-linear function is divided into dif-
ferent steps:

1. Permutations of the bits

2. Addition of the key Ki using the ⊕ operation.

3. Non-linear substitutions represented by s-
boxes.

Our hardware implementation of DES is fully
pipelined which means that we introduced regis-
ters between every round function. It allows to
encrypt one plaintext in one clock step. There-
fore, the encryption rate only depends on the work
frequency. We carried out our experiments on a
VIRTEX1000BG560 FPGA and reach a work fre-
quency of 66.6 MHz. Moreover, we could fit 5 DES
blocks on one FPGA. It means a final encryption
rate of 5 × 66.6MHz = 333 Mencryptions/sec or
5 × 66.6MHz × 64bits = 21 Gbits/sec.

4 Linear Cryptanalysis

Linear cryptanalysis is a cryptanalytic technique
that takes advantage of eventual input-output cor-
relations over a few rounds of an algorithm. DES
presents this interesting property and therefore is
susceptible to be broken by a linear cryptanalysis

2



attack. In its basic version, linear cryptanalysis
is a known plaintext attack. The purpose of this
method is to obtain a linear approximation of the
DES.

To find this expression, we looked for boolean re-
lations between inputs and outputs of s-boxes with
a probability as different as possible from 1

2
. The

approach chosen by Matsui was to investigate the
probability that a XOR relation between input bits
coincides with a XOR relation between output bits,
for every s-box. After an empiric search of all the
possible linear relations, Matsui found the best re-
lation x2 = y1⊕y2⊕y3⊕y4 for s-box 57 that holds
with probability 12

64
. Other relations were found

with worse probabilities.

The next step was to extend these relations to
one round and finally to combine them in order to
get a linear approximation of DES, involving plain-
text bits, key bits and ciphertext bits, with the
probability that this approximation holds. Matsui
found:

PH [7, 18, 24] ⊕ F1(PL,K1)[7, 18, 24] ⊕

CH [15] ⊕ CL[7, 18, 24, 29] ⊕

F16(CL,K16)[15] = K3[22] ⊕

K4[44] ⊕ K5[22] ⊕ K7[22] ⊕

K8[44] ⊕ K9[22] ⊕ K11[22] ⊕

K12[44] ⊕ K13[22] (2)

Where PH and PL are plaintext bits, CH and CL

are ciphertext bits and Ki are key bits. Moreover,
F1(PL,K1)[7, 18, 24] denotes the first F function
and F16(CL,K16)[15] the last one. Both F func-
tions involves 6 key bits.

According to Matsui’s article, this equation holds
with probability 1

2
+1.19×2−21. In order to recover

the 12 key bits involved in F1 and F16, we will com-
pute equation 2 for all the 26 × 26 = 4096 possible
keys and a large number of plaintexts. Knowing
that only one of the keys is correct, there is one of
the 4096 equations that will hold more significantly,
corresponding to the correct key. The following al-
gorithm summarizes this idea:

7DES has 8 s-boxes mapping 6 input bits on 4 output
bits

Algorithm

1. For each candidate Ki
n

(i=1,2,. . . 4096) of Kn,
let Ti be the number of plaintexts such that
the left side of the equation (7.12) is equal to
zero.

2. Let Tmax be the maximal value, Tmin the min-
imal value of all Ti’s and N the number of
plaintexts tried.
If |Tmax − N

2
| > |Tmin − N

2
|, then adopt the

key candidate corresponding to Tmax.
If |Tmax − N

2
| < |Tmin − N

2
|, then adopt the

key candidate corresponding to Tmin.

The success rate of the algorithm depends on the
number of plaintexts tried and the probability that
equation 2 holds. Approximately, if the probability
that the linear approximation holds is 1

2
+ 1.19 ×

2−21, we will need ' (221)2 = 242 plaintexts to
recover the key bits.

Implementation problems: The hardware re-
quirements of this algorithm depends on the num-
ber of times equation 2 has to be computed, corre-
sponding to a number of counters. It was practi-
cally impossible to fit 4096 counters on our FPGA
and therefore, we had to modify equation 2 to face
hardware constraints.

Looking back at equation 2, we see that the coun-
ters are introduced by terms F1 and F16, each of
which depends on 6 key bits. If we could force
one of these terms (say F1) to a constant value, we
would get rid of 26 counters. Due to the non-linear
character of F1, the only way to force it at a con-
stant value is to fix its inputs. As the key bits are
obviously constant, all we have to do is to fix 6 bits
of PL to a constant value. As a consequence, our
attack becomes a chosen-plaintext attack. Finally,
we implemented the following equation:

PH [7, 18, 24] ⊕ F16(CL,K16)[15] ⊕

CH [15] ⊕ CL[7, 18, 24, 29] =

F1(PL,K1)[7, 18, 24] ⊕ K3[22] ⊕

K4[44] ⊕ K5[22] ⊕ K7[22] ⊕

K8[44] ⊕ K9[22] ⊕ K11[22] ⊕

K12[44] ⊕ K13[22] (3)

Where the right term is a constant.

3



Experimental results: We carried out the ex-
periments on a single Xilinx FPGA, at a work fre-
quency = 66.6 MHz (=226) and we parallelized 6
attack blocks. Therefore, we were able to compute
6 × 226 equations per second and 242 evaluations
of equation 3 took about 3 hours. We performed
tests with 50 different keys and the next table sum-
marizes the experimental success rate for different
amounts of chosen-plaintexts/ciphertexts pairs:

N 238 239 240 241 242

Success rate 4% 8% 14% 33% 77%

Completing the attack: Once these 6 key bits
of information have been obtained, the question be-
comes: ”How can they be exploited to obtain the
complete key?”. Since the 6 bits recovered belong
to the 12 involved in equation 2, we can now im-
plement this equation with 6 key bits fixed. This
would require 26 counters, which is clearly achiev-
able by the FPGA. Applying the same treatment
to the dual equation (where we just invert the way
we cover the rounds) would provide another 12
bits. Therefore, we could find 24 bits in about 12
hours. The exhaustive search of the remaining 32
bits would take about 20 seconds.

Conclusion: We implemented a first FPGA im-
plementation of linear cryptanalysis. Due to hard-
ware constraints, the attack had to be adapted to
make it less memory-consuming. The resulting de-
sign is deployed on reasonably expensive hardware
(3500$) and is capable to break a full DES key in
12-15 hours, including a final exhaustive search.

5 Time-Memory Tradeoff

In 1980, Hellman introduced the concept of
cryptanalytic time-memory tradeoff, which allows
the cryptanalysis of any N key symmetric cryp-
tosystem in O(N

2

3 ) operations with O(N
2

3 ) stor-
age, provided a precomputation of O(N) is per-
formed beforehand. This idea never led to realistic
implementations. This section refers to Rivest [4]
who introduced the idea of a time-memory tradeoff
using distinguished points. We present the first ex-
perimental results of a cryptanalytic time-memory
tradeoff using distinguished points in the context
of a chosen-plaintext attack against a 40-bit DES.

Basic scheme: The time-memory tradeoff
method for breaking ciphers is composed of a pre-
computation task and an online attack. We briefly
introduce these steps with two intuitive schemes.

Figure 2: Precomputation

1. A chain is formed by a number l of encryp-
tions using a chosen plaintext and l different
keys. A defined property holds for the first and
last keys and we call them distinguished points
(DP). During the precomputation, we compute
a number of chains and store start points (SP),
end points (EP) and the corresponding length
of chains in a table.

Figure 3: Online attack

2. Let the chosen plaintext be encrypted with a
secret key. During the attack, we can use the
resulting ciphertext as a key and start a chain
until finding a distinguished point. Then, we
check if this end point is in our table, take the
corresponding start point and restart chaining
until we find the ciphertext again. The secret
key is its predecessor in the computed chain.

This basic scheme illustrates that the success rate
of the attack depends on how well the computed

4



chains ”cover” the key space. In order to improve
this cover, we made use of different mask function
that mixes the output bits of DES, allowing differ-
ent covers of the key space. Let r be the number
of different mask functions.

Stategy: In the tradeoff method, one tries to
store information about as many different keys as
possible by taking as long chains as possible. How-
ever, different critical overlap situations can appear
during the precomputation and add constraints to
the tradeoff.

1. A chain can cycle. This is the case where we
find an already computed key of the chain be-
fore finding a distinguished point.

2. Two chains computed with the same mask
function can merge. This is the case where
two start points give two different chains with
the same image. This means that from the
moment of the merge until the end of at least
one chain, both chains contains the same keys.

3. A chain can collide with another chain com-
puted with a different mask function. This is
the situation where two chains computed with
different mask functions have some common
points between SP and EP. It means that some
keys are stored several times, which is not ef-
ficient.

We consider different solutions to deal with over-
laps.

1. A cycle would produce a loop during the pre-
computation. We reject them by determining
a maximum length for the chains.

2. Mergers are processed after the precomputa-
tions. If the same DP is an end point for
different chains, then only the longest chain
will be stored. Consequently, the effective-
ness of the precomputation decreases when the
number of triples already stored raises. More-
over, long chains are more involved in mergers
than short chains. From this, we can reduce
overlaps caused by mergers by decreasing the
length of chains and number of chains stored.
Therefore, we took different mask functions in

order to fulfil the following condition:

r × Nbr.Chains.Stored ×

Average.length.of.chains = 240 (4)

3. Finally, collisions can not be rejected by a pro-
cessing on the triples stored. The amount of
collisions only appears in the final success rate
of the algorithm. Therefore, we took a security
coefficient in precomputation task and modify
equation 4:

r × Nbr.Chains.Stored ×

Average.length.of.chains ≥ 240 (5)

Implementation: a hardware/software co-
design. The implementation choices were en-
forced by precomputation task and online attack.
Obviously, the online attack had to be efficient on
every PC and therefore is being dealt with in the
software part. On the other hand, we performed
the precomputation task with an optimal usage of
the FPGA considering its limited size. It led us to
carry out some parts of the precomputation by soft-
ware like the sort on end points. We also wanted
our hardware circuit to be parametric in order to
change the tradeoff parameters by software. There-
fore, some tasks are hardware implemented with a
software control (SWC). The next list summarizes
the hardware vs software design decisions.

Task HW SW SWC
SP generation X - -
DES chaining X - -

Mask functions X - X
Rejection of long chains X - X
Rejection of short chains X - X

DP detection X - -
Length computation X - -

Triples storage - X -
Sort on EP - X -

Merger rejection - X -
Online attack - X -

Results: The DES encrypts a 64-bit plaintext
using a 56-bit secret key. We defined a 40-bit DES
by fixing 16 key bits to arbitrary values and propose
a chosen-plaintext attack to recover the 40 bits of
the secret key.

5



Using our hardware implementation, we suc-
ceeded in storing 220 chains with an average length
of 210.47 for every mask function and therefore de-
cided to fulfil condition 5 by taking 210 different
mask functions. In terms of precomputation time,
we ran the FPGA during about one week. In terms
of memory requirements, we stored all chains on 16
CDROM’s8, corresponding to 16 sets of 26 mask
functions.

Concerning the online attack, we first define a
theoretical key space cover (TKSC), a practical
key space cover (PKSC) and a practical success
rate (SR) in terms of i, the number of CDROM’s
used.

TKSC(i) = i × 236.47 (6)

PKSC(i) =
Number.of.keys.found(i)

Number.of.keys.tried(i)
× 240 (7)

SR(i) =
Number.of.keys.found(i)

Number.of.keys.tried(i)
(8)

The next tables summarizes the online attack re-
sults. Differences between TKSC and PKSC are
due to the collision problem.

Nbr of CDROM’s SR
1 8.6%
2 17%
4 31.4%
8 49.7%
16 72%

Nbr of CDROM’s TKSC PKSC
1 236.47 236.47

2 237.47 237.44

4 238.47 238.33

8 239.47 238.99

16 240.47 239.53

The online attack was performed on a single PC9

and we recovered one key in about 10 seconds with
a success rate of 72%. An exhaustive search of the
key on the same PC would have taken 50 days.

Conclusion: We performed a first implementa-
tion of a time-memory tradeoff using distinguished
points and presented experimental results that con-
firm its effectiveness in cryptanalytic contexts. The

8650Mbytes
918Gbytes memory/256MbytesRAM/350MHz

resulting chosen-plaintext attack significantly im-
proves all existing complete cryptanalytic tech-
niques attempted against DES in terms of speed.
The method is general an could be applied to other
block ciphers or one-way functions. Note that time-
memory tradeoff attacks can be dangerous even
when the key space is too large to be exhaustively
precomputed (say 280). Consider an application
where immediate inversion of a single cipher can be
disastrous (e.g. an online bank transfer), then, con-
structing tables that would cover ”only” 260 keys
would allow online inversion with probability 2−20,
which is not negligible.

6 Conclusion

In cryptanalytic applications, FPGA’s can be
used as dedicated computers in order to perform
some computations at very high frequencies. Con-
sequently, they speed up the attacks and improve
their effectiveness, with some additional constraints
that can be solved either by modifying algorithms
or by hardware/software co-designs.

Practically, we evaluated two hardware imple-
mentations of cryptanalytic attacks and both cases
improved existing results. We performed the fastest
implementation of the linear cryptanalysis and the
first experimental results of a time-memory tradeoff
using distinguished points.

References

[1] Mitsuru Matsui: Linear Cryptanalysis Method for

DES Cipher, EUROCRYPT93 : 386-397.

[2] Mitsuru Matsui: The First Experimental Crypt-

analysis of the DES, CRYPTO94 : 1-11.

[3] M.Hellman, A Cryptanalytic Time-Memory

Tradeoff, IEEE transactions on Information
Theory, Vol 26, 1980, pp.401-406.

[4] D.Denning, Cryptography and Data Security,
p.100, Addison-Wesley, 1982, Out of Print.

[5] Douglas R. Stinson: Cryptography, Theory and

Practice, CRC press, 1995.

[6] Dieter Gollman: Computer Security, Wiley, 1999.

[7] Xilinx: Virtex 2.5V Field Programmable Gate Ar-

rays Data Sheet, http://www.xilinx.com.

6


